Novel kinetic and background current selectivity in the even harmonic components of fourier transformed square-wave voltammograms of surface-confined azurin.

نویسندگان

  • Jie Zhang
  • Si-Xuan Guo
  • Alan M Bond
  • Michael J Honeychurch
  • Keith B Oldham
چکیده

Fourier transform analysis of ramped square-wave voltammograms indicates the availability of a novel form of kinetic selectivity for surface-confined electron-transfer processes. Thus, for all the even harmonic components, quasi-reversible processes are sensitive to the surface coverage, the reversible potential, the electron-transfer rate constant (k(0')), and the electron-transfer coefficient (alpha), as well as to the amplitude (DeltaE) and frequency (f) of the square wave and dc scan rate. Additionally, it is insensitive to background capacitance current. In contrast, reversible processes and background currents are predicted to be absent from the even harmonics and only detectable in the odd harmonic components. The square-wave voltammetry of the surface-confined quasi-reversible azurin process azurin[Cu(II)] + e(-) right arrow over left arrow azurin[Cu(I)] at a paraffin-impregnated graphite electrode has been employed as a model system to test theoretical predictions. Most voltammetric characteristics of the even harmonic components obtained from the Fourier analysis are consistent with electrode kinetic values of k(0') = 90 s(-1) and alpha = 0.48, although some nonideality possibly due to kinetic dispersion also is apparent. Conditions also have been determined under which a readily generated waveform constructed from the Fourier series of sine waves produces voltammograms that are essentially indistinguishable from those predicted when an ideal square wave is employed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Determination of Riboflavin by Nanocomposite Modified Carbon Paste Electrode in Biological Fluids Using Fast Fourier Transform Square Wave Voltammetry

Herein, fast Fourier transformation square-wave voltammetry (FFT-SWV) as a novel electrochemical determination technique was used to investigate the electrochemical behavior and determination of Riboflavin at the surface of a nanocomposite modified carbon paste electrode. The carbon paste electrode was modified by nanocomposite containing Samarium oxide (Sm2O3)/reduced gra...

متن کامل

Fault Locating in High Voltage Transmission Lines Based on Harmonic Components of One-end Voltage Using Random Forests

In this paper, an approach is proposed for accurate locating of single phase faults in transmission lines using voltage signals measured at one-end. In this method, harmonic components of the voltage signals are extracted through Discrete Fourier Transform (DFT) and are normalized by a transformation. The proposed fault locator, which is designed based on Random Forests (RF) algorithm, is train...

متن کامل

Multistep Surface Electrode Mechanism Coupled with Preceding Chemical Reaction-Theoretical Analysis in Square-Wave Voltammetry

In this theoretical work, we present for the first time voltammetric results of a surface multistep electron transfer mechanism that is associated with a preceding chemical reaction that is linked to the first electron transfer step. The mathematical model of this so-called “surface CEE mechanism” is solved under conditions of square-wave voltammetry. We present relevant set of results portrayi...

متن کامل

Protein-film voltammetry: a theoretical study of the temperature effect using square-wave voltammetry.

Square-wave voltammetry of surface redox reactions is considered as an adequate model for a protein-film voltammetric setup. Here we develop a theoretical approach to analyze the effects of temperature on square-wave voltammograms. The performed simulations address the surface redox reactions featuring slow, modest and fast electron transfer. The theoretical calculations show that the temperatu...

متن کامل

A Novel Electrodialysis Membrane, Modified by Polydopamine and Carbon Nanofibers, Removes Toxic Heavy Metal Ions from Wastewaters

Background: In light of severe and growing shortages of clean water and the rising environmental pollution in many countries, seawater desalination has been an effective method to produce freshwater. Cationic membranes have enabled environmental scientists to effectively remove toxic heavy metals from wastewater and to regenerate freshwater. Methods: We used a novel method, involving electro- ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry. B

دوره 109 18  شماره 

صفحات  -

تاریخ انتشار 2005